Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(1): 177-185, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511454

RESUMO

Microbial necromass carbon (MNC) is a crucial source for stable soil carbon pool, and understanding its response to carbon inputs from both aboveground (litter) and belowground (roots) in subtropical forest soils is essential for assessing soil carbon stocks in global ecosystems. In a Castanopsis carlesii plantation at the Sanming Forest Ecosystem National Observation and Research Station in Fujian Province, we conducted an experiment with five treatments, including root removal (NR), aboveground litter removal (NL), no litter input (removals of both aboveground litter and roots, NI), double aboveground litter addition (DL), and control (CK). After seven years, we collected soil samples in the 0-10 cm soil layer to examine changes in MNC content and its contribution to soil organic carbon (SOC). Results showed that NR treatment reduced MNC, bacterial necromass carbon (BNC), and fungal necromass carbon (FNC) by 15.9%, 20.2%, and 14.5%, respectively, while other treatments did not induce significant changes. The NR, NL, NI, and DL treatments did not affect the contributions of BNC, FNC, and MNC to SOC. Correlation and path analyses revealed that litter and root carbon input treatments could alter the MNC content directly or indirectly through changing soil available substrates and microbial community structure. Our results suggested that roots exert a stronger influence on the maintenance of MNC than aboveground carbon source in the mid-subtropical plantations.


Assuntos
Ecossistema , Fagaceae , Solo/química , Carbono/análise , Microbiologia do Solo , Florestas , Bactérias
2.
Front Cell Infect Microbiol ; 13: 1209381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520442

RESUMO

Porphyromonas gingivalis (P. gingivalis) is a Gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. P. gingivalis expresses a variety of virulence factors that disrupt innate and adaptive immunity, allowing P. gingivalis to survive and multiply in the host and destroy periodontal tissue. In addition to periodontal disease, P.gingivalis is also associated with systemic diseases, of which insulin resistance is an important pathological basis. P. gingivalis causes a systemic inflammatory response, disrupts insulin signaling pathways, induces pancreatic ß-cell hypofunction and reduced numbers, and causes decreased insulin sensitivity leading to insulin resistance (IR). In this paper, we systematically review the studies on the mechanism of insulin resistance induced by P. gingivalis, discuss the association between P. gingivalis and systemic diseases based on insulin resistance, and finally propose relevant therapeutic approaches. Overall, through a systematic review of the mechanisms related to systemic diseases caused by P. gingivalis through insulin resistance, we hope to provide new insights for future basic research and clinical interventions for related systemic diseases.


Assuntos
Resistência à Insulina , Porphyromonas gingivalis , Humanos , Composição de Bases , RNA Ribossômico 16S , Filogenia , Análise de Sequência de DNA , Insulina
3.
Glob Chang Biol ; 29(12): 3476-3488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931867

RESUMO

Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.


Assuntos
Ecossistema , Micorrizas , Raízes de Plantas/metabolismo , Secas , Florestas , Micorrizas/metabolismo , Árvores , Exsudatos e Transudatos/metabolismo , Compostos Orgânicos/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Solo/química , Açúcares/análise , Açúcares/metabolismo , Exsudatos de Plantas/análise , Exsudatos de Plantas/metabolismo
5.
Ying Yong Sheng Tai Xue Bao ; 30(11): 3662-3670, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31833678

RESUMO

Forest harvesting changes the quantity and quality of organic matter inputs into soil, and thus would alter soil nutrient content and availability. Phosphorus (P) is a key element affecting plant growth. The effects of harvest residue treatments on soil P fractions and availability had not yet been evaluated. In this study, harvest residue retainment (RR), residue removal (R) and residue burning (RB) treatments were manipulated after clear-cutting in a mature Chinese fir (Cunninghamia lanceolata) plantation at the Sanming Forest Ecosystem and Global Change Research Station in Fujian, China. This study focused on the dynamics of soil P fractions and their driving factors in the 0-10 cm and 10-20 cm soil layers after 4-year residue treatments. The results showed that, in RR treatment, the contents of easily-available P, moderately-available P and non-available P at the 0-10 cm soil layer were all significantly higher than those in R treatment, while the contents of moderately-available P and non-available P at the 10-20 cm soil layer was significantly higher than those in RB treatments. The ratios of soil organic carbon (C) to organic P (C:Po) in both layers were over 200 for all the three treatments, with ratios in RR treatment being significantly lower than those in RB and R treatments, indicating that RR could alleviate P limitation in this ecosystem. Moreover, results of the redundancy analysis showed that changes in P fractions were mainly affected by dissolved organic C, free Fe and noncrystalline amorphous Fe. The results suggested that soil organic P and available P were mainly from the decomposition of plant residues, which supported continuous P supply for plant growth. RR could enhance soil P content, thereby improve soil P availability and mitigate P limitation in Chinese fir plantation.


Assuntos
Cunninghamia , Carbono , China , Ecossistema , Nitrogênio , Fósforo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...